
Large deployment of
GNOME from the
administrator’s
perspective

Mini Debconf Paris 2012

25 november 2012

 Debian is awesome to use in a 1000+ machines environment

 Automated deployment tools: FAI, debian-installer

 Customization: custom APT repositories

 Administration tools, and our famous reliability!

 Workstations are a good use case, with GNOME as the desktop

 The easy way: leave users with self-administration permissions
→ But it doesn’t scale very well in terms of support

 Our way: standard workstations with no specific permissions

 In order to ship the best systems for users:

 How does GNOME actually work on the inside?

 Where are important places to look for a configuration / a problem?

 What can I tweak on my systems?

Introduction

OUTLINE

1. The base plumbing for the desktop
DBus, PolicyKit, ConsoleKit

2. User settings
GConf and GSettings

3. Login and password management
The display manager & the keyring

4. Networking with GNOME
Configuring and delegating the network with Network-Manager
The virtual filesystem layer

5. Miscellanea
Other plumbing
Using the plumbing in custom scripts
Deploying the configuration on workstations

GNOME 2.30 (squeeze)

GNOME Classic
3.4 (wheezy)

GNOME 3.4
(wheezy)

D-Bus

 D-Bus is the basis for inter-process
communications between GNOME
applications and the underlying system

 Based on a typed messaging system over Unix sockets

 Implements an asynchronous RPC mechanism

 The system bus is started at boot and never restarted

 The session bus is started before the session manager by X11 scripts

 Services can either

 Start by themselves and register a name, e.g. org.freedesktop.NetworkManager

 Be auto-spawned by the DBus daemon
→ /usr/share/dbus-1/services/*.service and /usr/share/dbus-1/system-services/*.service

 Basic permissions management in /etc/dbus-1/*.conf

 Most relevant daemons use PolicyKit instead

Application

System
dbus-daemon

Started by
/etc/init.d/dbus

Session
dbus-daemon

Started by
/etc/X11/Xsession.d

$DBUS_SESSION_BUS_ADDRESS

System
service

Session
service

ConsoleKit and PolicyKit

 ConsoleKit keeps track of users logged on. Try the command: ck-list-sessions

 Can be queried to know which user is physically logged on (active = TRUE)

 In jessie, will be replaced by a similar systemd service

 Default action: udev-acl (see /lib/udev/rules.d/70-acl.rules)
→ Sets permissions dynamically on a number of devices like /dev/snd/*
→ Most specific groups (audio, video, netdev…) are obsolete.

 PolicyKit adds complex permissions management to D-Bus

 Can wrap any D-Bus call, invisible from the application

Application PolicyKit
wrapperD-Bus

System
service

User PolicyKit agent
polkit-gnome-authentication-agent-1

or gnome-shell Default policy
/usr/share/polkit-1/actions/*.policy

/etc/polkit-1

ConsoleKit
Is this user

active?
Give me a
password

Tuning the default policy

 Ship a file in /etc/polkit-1/localauthority/30-site.d/my-config.pkla

 [Allow users to shutdown the system even when someone else is logged on]
Identity=*
Action=org.freedesktop.consolekit.system.stop-multiple-users
ResultAny=no
ResultInactive=no
ResultActive=yes

 [Let some users change the CPU frequency by hand]
Identity=unix-group:benchmarks
Action=org.gnome.CPUFreqSelector
ResultAny=no
ResultInactive=no
ResultActive=yes

 [Let a user install any package from the repository using software-center]
Identity=unix-user:joss
Action=org.debian.apt.install-packages
ResultAny=no
ResultInactive=no
ResultActive=auth_self

 In jessie, you will be able to set more complex rules using JavaScript

ResultActive is for the user
actually using the machine

Group selection

Ask the user’s own password

User settings in GNOME 2.x: GConf

 Still used by a few applications, but not the core of GNOME in wheezy

 Stack of stores implementing defaults, user settings, mandatory (readonly) settings

 Debian-specific paths:
/usr/share/gconf/schemas → schemas (+ upstream defaults)
/usr/share/gconf/{defaults,mandatory} → overrides and mandatory settings
/var/lib/gconf/* → default stores (where schemas/defaults are applied)
/etc/gconf/2/path → the stores list

 Changing a user setting: gconftool --type type --set key value

 Changing a system setting:
gconftool --direct --config-source xml:readwrite:/etc/gconf/gconf.xml.defaults --type type --set key value

 Changing a setting in a Debian package:
debian/package.gconf-defaults or package.gconf-mandatory
 /path/to/key value
dh_gconf --priority 90

 Which settings are available?
gconf-editor or gconftool -R /

Application libgconf gconfd-2D-Bus
(formerly CORBA)

User XML store

System XML stores

User settings in GNOME 3.x: GSettings

 Schemas, defaults and overrides are managed by the client

 The daemon uses binary databases for speed

 Changing a user setting:

 gsettings set org.gnome.desktop.sound event-sounds false

 Listing all settings:

 gsettings list-recursively org.gnome.nautilus

 There is also the (buggy) dconf-editor

Application libgio Dconf daemon
(or Gconf !)

D-Bus

User binary store
(gvdb format)

~/.config/dconf/user

System binary stores
(based on .ini-like files)

/etc/dconf/{profile,db}Schemas and overrides
/usr/share/glib-2.0/schemas

I don’t like those beeps

Tuning GSettings in a package

 Ship an override file in debian/package.gsettings-override
dh_installgsettings --priority=90

 # Custom background
[org.gnome.desktop.background]
picture-options='zoom'
picture-uri='file:///my/nice/picture.svg'

 # Squeeze-like icons on the desktop
[org.gnome.desktop.background]
show-desktop-icons=true

 # I haz a theme
[org.gnome.desktop.interface]
gtk-theme='FabulousTheme'
icon-theme='WonderfulIcons'
[org.gnome.desktop.wm.preferences]
theme='CoolBorders'

 # Default applications and extensions in the shell
[org.gnome.shell]
favorite-apps=['evolution.desktop', 'libreoffice-impress.desktop', …..]
enabled-extensions=['apps-menu@gnome-shell-extensions.gcampax.github.com']

You can also use XML files
for evolving backgrounds

The GTK theme needs
to have the same name
for GTK+ 2.0 and 3.0

D-Conf: default and mandatory system settings

 Configure a system database: /etc/dconf/profile
user-db:user
system-db:local

 Default settings then go in /etc/dconf/db/local.d/00_my_defaults

 # Those users are too dumb, don’t let them do anything
[org/gnome/desktop/lockdown]
disable-applications-handlers=true
disable-log-out=true
disable-print-setup=true
…

 Make those defaults mandatory with locks: /etc/dconf/db/local.d/locks/my_locks

/org/gnome/desktop/lockdown/disable-applications-handlers
/org/gnome/desktop/lockdown/disable-log-out
/org/gnome/desktop/lockdown/disable-print-setup
…

 To update the database:
dconf update

Separator for defaults is /
(instead of . for schemas)

GDM: the display manager

 All communication goes through D-Bus

 Tight integration with ConsoleKit (manages user/VT/display relations)

 Displays are started and closed dynamically

 Minimal login session launched to manage login (with full a11y support)

GDM daemon
(gdm3)

GDM slave
(one per display) Slave

ConsoleKit
(used from

everywhere)

PAM

gnome-session
(as Debian-gdm)

 Before login

Configured session
(as user)

After
Login

GDM greeter

Minimal session

Xorg

Xorg

User applications gdmflexiserver

 Daemon configuration: /etc/gdm3/daemon.conf (Debian-specific)

 Enabling autologin, debugging, VT configuration…

 XDMCP

 The real configuration for the minimal session (Debian-specific)

 GNOME 2.30: /etc/gdm3/greeter.gconf-defaults
In a package: /usr/share/gdm/greeter-config/90_my_config

+ invoke-rc.d gdm3 reload

 GNOME 3.x: /etc/gdm3/greeter.gsettings (GSettings format)
In a package: /usr/share/gdm/dconf/90-my-settings (DConf format)

+ invoke-rc.d gdm3 reload

 User defaults (language, session, user icon):

 In GNOME 2.30: ~/.dmrc and ~/.face

 In GNOME 3.x: AccountsService → /var/lib/accountsservice

Configuring GDM

 User interface: seahorse

 Access user keys and passwords

 pam_gnome_keyring also acts when changing the password

 Infrastructure constraint: password change is on the same machine

Storing secrets: the GNOME keyring

gnome-session
GDM

pam_gnome_keyring Minimal keyring
Keeps the password

 Keeps user secrets in AES-encrypted files

 Several keyrings, each with its own password

 Also acts as GnuPG and SSH agent

 Special case: the login keyring uses the login password

gnome-keyring-daemon

User
applications

 D-Bus
org.freedesktop.secrets

libgnome-
keyring

Passwords are
kept in sync

 System connections: started at boot time

 Controlled by users with appropriate permissions (PolicyKit)

 Preconfigured by the sysadmin

 User connections: started at login time / on-the-fly

 Secrets stored securely in the keyring

 Fast user switching: drops the connection (either wanted or buggy behavior).
→ NM 0.9 now defaults to system connections but supports user connections

 System connections with user secrets: 802.1x

The Network-Manager infrastructure

System connections (.ini-like files)
/etc/network-manager/system-connections

NM 0.9 (wheezy) :
also stores

user connections

GConf
User connections

(NM 0.8 only)

Network-Manager daemonPK

GNOME keyring
User secrets

Network-Manager agent
nm-applet or gnome-shell

System
bus

Main UI

Kernel
(netlink)

Password
prompts

Configuring system connections

 In /etc/network-manager/system-connections/eth0-
internal

 [connection]
id=eth0-internal
uuid=deadbeef-1234-1234-1234-deadbeef1234
type=802-3-ethernet

[ipv4]
method=auto
dns=10.0.0.42
dns-search=unix-servers.nolcorp.com
ignore-auto-dns=true

[802-3-ethernet]
duplex=full
mac-address=13:37:15:de:ad:11

[ipv6]
method=ignore

 In /etc/network-manager/system-connections/eth0-
external

 [connection]
id=eth0-external
uuid=deadbeef-1234-1234-1234-deadbeef1234
type=802-3-ethernet
autoconnect=false

[ipv4]
method=auto

[802-3-ethernet]
duplex=full
mac-address=13:37:15:de:ad:11

[ipv6]
method=auto

 Let’s say your DHCP server returns incorrect information, Windows-only
 But you need working DHCP + IPv6 in the outside world

 Other use cases

 Pre-configuring Wi-Fi with a shared key the user doesn’t see (not very secure though)

 802.1x with a per-machine certificate the user doesn’t see

 Pre-configured 802.1x with per-user credentials

→All still with access to other networks for users with PolicyKit permissions

Required on 0.9

Identifies the device

 All communications go through D-Bus

 All mount actions are explicit from the application
→ Done by gnome-settings-daemon, nautilus or gnome-shell

 Command-line:

 See all mounted filesystems: gvfs-mount -l

 Mount a CIFS mount: gvfs-mount smb://server/share/path

 Gvfs-fuse: nautilus redirects applications not supporting GIO to ~/.gvfs

 Needs fuse group membership

Networked and local filesystems: the VFS layers

GNOME
Application libgio

GVFS daemon

 D-Bus

gvfsd-$FS
(http, smb, cdda…)

udisks-daemon

D-Bus

PK

palimpsest

libgdu

gvfsd
-$FS

gvfsd
-$FS

One per mount

Mount
operations

udev

gvfs-fuse-daemon

Other
application

FUSE

The palimpsest interface (GNOME disk utility)

 Available applications (menus and MIME associations):
/usr/share/applications and ~/.local/share/applications

 Adding new sub-menus:
/etc/xdg/menus/applications-merged/my-menu.menu

 CUPS PolicyKit interface: cups-pk-helper

 Squeeze: system-config-printer{,-applet}
Wheezy: directly in g-control-center & g-settings-daemon

 Query / configure printers, notifications for print operations

 Power management interface: upower

 g-power-manager (squeeze) / g-settings-daemon (wheezy) defines the policy

 Sound server / mixer: PulseAudio (wheezy only)

 All mixing now done through it

 Can be configured to mute sound when switching users

Other useful things to know & configure

 In Python:
from gi.repository import Gtk, GnomeKeyring, …

 Formerly in squeeze: autogenerated Python modules
The conversion script does most of the job

 In JavaScript:
#! /usr/bin/seed
Gtk = imports.gi.Gtk;

 Some real-world-examples:

 A daemon / applet to bypass an IE-only enterprise proxy
Notification area / libnotify: display status
Autostart with the session
Store the password in the keyring

 A script to create CIFS shortcuts accessible from “Places” menu
Store the password for GVFS
~/.gtk-bookmarks → “Places” and the shortcuts for GtkFileChooser

 A script to wrap a RDP / Citrix client
Extract the same password as for CIFS

GNOME is easily scriptable

 The infrastructure is more work than the desktop

 Most of the time: a Debian mirror and a custom APT repository
→ rsync / debmirror and reprepro / mini-dinstall / …

 A custom installation CD: FAI or d-i

 Authentication: OpenLDAP or Fedora directory server

 Printing is tricky

 CUPS can hold thousands of printers but the UI becomes unusable

 J. Blache’s solution: filtering printers by location with LDAP
→ Welcome to the wonderful world of copyright assignment.

 Network file systems: don’t forget about NTP!

 Administrating a large bunch of machines: forget about simplistic solutions

 2 good tools in Debian: Puppet and BCFG2

 Can be linked to inventory: GLPI + FusionInventory

 Root password management anyone?

 You encrypt partitions? Don’t forget about key escrow

An infrastructure for GNOME machines

Thank you.

	TITRE DE LA PRÉSENTATION
	TITRE DE LA SLIDE
	SOMMAIRE
	Diapo 4
	TITRE DE LA SLIDE
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	TITRE DE LA SLIDE
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22

